МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Балтийский федеральный университет имени Иммануила Канта»

	«У	КЧЗВТ	КДАЮ»
]	Руко	водите	ль ОНК
«Институт вы	соки	х техно	ологий»
		A.E	В. Юров
	<u> </u>	<u> </u>	2023 ı

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Механика композиционных материалов стохастической структуры»

для программ подготовки научных и научно-педагогических кадров в аспирантуре

Лист согласования

Составители: Лейцин Владимир Нояхович, д.фм.н., профессор, профессор ОНК «Институт высоких технологийх
Программа одобрена Ученым советом ОНК «Институт высоких технологий»
Протокол №7 от «6» июля 2023 г.
Председатель Ученого совета ОНК «Институт высоких технологий»А.А. Шпилевой

Содержание

1. Общая характеристика дисциплины	4
2. Объём дисциплины	
3. Учебно-тематический план дисциплины	5
4. Учебно-методическое сопровождение самостоятельной работы обучающихся	5
5. Оценочные средства для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся	ена.
6. Критерии оценивания результатов контрольно-оценочных мероприятий текущей и промежуточной аттестации по дисциплине	7
7. Учебно-методическое и информационное обеспечение дисциплины	
8. Материально-техническое обеспечение дисциплины	8

1. Общая характеристика дисциплины

Учебная дисциплина «Механика композиционных материалов стохастической структуры» относится к числу дисциплин, направленных на подготовку и сдачу кандидатского экзамена по программе подготовки научных и научно-педагогических кадров в аспирантуре научной специальности 1.1.8 «Механика деформируемого твердого тела».

Целью дисциплины «Механика композиционных материалов стохастической структуры» является приобретение основных профессиональных компетенций в ходе углубленного изучения фундаментальных основ материаловедения металлических, неметаллических неорганических, углеродных и органических (полимерных) композиционных материалов (композитов, КМ) конструкционного и функционального назначения.

Задачи дисциплины:

- ознакомить слушателей с основными классами композиционных материалов;
- ознакомить слушателей с основными методами решения статистически нелинейных краевых задач механики композитов;
- продемонстрировать основные методы исследования и испытания композитов стохастической структуры.

Язык реализации дисциплины – русский.

2. Объём дисциплины

Вид учебно	эй работы	Всего, час.	Объём по семестрам 3
Контактная работа обучающегося с преподавателем по видам учебных занятий (КР):		18	18
	Лекционные занятия (Л)	8	8
Семинарские/ Практические занятия (СПЗ)		10	10
Самостоятельная работа обучающегося, в том числе подготовка к промежуточной аттестации (СР)		90	90
Вид промежуточной аттестации: Зачет (3), Зачет с оценкой (30), Экзамен (Э), Кандидатский экзамен (КЭ)		30	30
Общий объём	Вчасах	108	108
	В зачетных единицах	3	3

3. Учебно-тематический план дисциплины

Номер	3. 3 4cono-1cmain accrum ill	Количество часов					
раздела, темы	аздела, Наименование разделов, тем		КР	Л	СПЗ	CP	Форма контроля
	Семестр 3	108	18	8	10	90	30
Раздел 1	Математические модели структурно- неоднородной среды	20	4	2	2	16	
Тема 1.1	Основные термины и понятия математической статистики.	10	2	2		8	
Тема 1.2	Постановка стохастической краевой задачи теории упругости для двухфазных полидисперсных композитов	10	2		2	8	
Раздел 2	Композиционные материалы стохастической структуры	20	4	2	2	16	
Тема 2.1	Макроскопические свойства композиционных материалов	10	2	2		8	
Тема 2.2	Прогнозирование макроскопических свойств композитов стохастической структуры.	10	2		2	8	
Раздел 3	. Методы решения статистически нелинейных краевых задач механики композитов	10	2	2		8	
Тема 3.1	Метод линеаризации. Метод моментов	10	2	2		8	
Раздел 4	Корреляционная теория.	24				24	
	Слоистая структура	8				8	
	Волокнистая структура.	8				8	
	КМ с зернистой структурой	8				8	
Раздел 5	Вязкоупругие свойства КМ	16	4	2	2	12	
	Математическая модель вязкоупругого поведения	6	2	2		4	
	Определение модельных параметров по экспериментальным данным	6	2		2	4	
	Вязкоупругая аналогия	4				4	
Раздел 6	Вероятностная модель разрушения Вейбулла композиционных материалов	6	2		2	4	
	Статистические подходы к анализу влияния среды на механические свойства твердых тел	6	2		2	4	
Раздел 7	Кинетическая модель накопления повреждений в композитах при неизотермических режимах нагружения	8	2		2	6	
Раздел 8	. Определение кинетических констант разрушения композитов при циклическом нагружении	4				4	
	Общий объем	108	18	8	10	90	

4. Учебно-методическое сопровождение самостоятельной работы обучающихся

Самостоятельная работа осуществляется в виде изучения литературы, данных по публикациям, подготовке индивидуальных работ, работа с лекционным материалом, самостоятельное изучение отдельных тем дисциплины; поиск и обзор литературы и электронных источников; чтение и изучение учебника и учебных пособий.

1. Промежуточная аттестация по дисциплине «Механика композиционных материалов стохастической структуры»

Промежуточная аттестация по дисциплине «Механика композиционных материалов стохастической структуры» проводится в формате экзамена.

Перечень вопросов к экзамену:

- 1. Основные термины стохастической механики.
- 2. Масштаб корреляции
- 3. Свойство эргодичности.
- 4. Понятие статистического осреднения.
- 5. Основные понятия метода линеаризации.
- 6. Основные понятия метода моментов.
- 7. Корреляционное приближение.
- 8. Теория хрупкой связи Вейбула.
- 9. Основные термины стохастической механики.

6. Критерии оценивания результатов контрольно-оценочных мероприятий текущей и промежуточной аттестации по дисциплине

По итогам экзамена на основе совокупности ответов по вопросам программы кандидатского экзамена, выставляется оценка по шкале порядка: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Отлично	 грамотно использована научная терминология; 					
	– четко сформулирована проблема, выдвигаемые тезисы					
	основательно аргументированы;					
	– указаны основные точки зрения по рассматриваемому вопросу;					
	 выражена и аргументирована собственная точка зрения рассматриваемые аспекты проблемы 					
Хорошо	 научная терминология применяется, допускаются несущественные ошибка или неточность в понятийном аппарате; 					
	 проблема сформулирована, имеются недостатки в аргументации выдвигаемых тезисов допущены фактические неточности, которые не нося 					
	существенного характера;					
	 продемонстрировано знание дискуссионных проблем по излагаемому вопросу 					
	- выражена и аргументирована собственная точка зрения на					
	рассматриваемые аспекты проблемы					
Удовлетворительно	 имеется представление о научной терминологии, но допущены существенные неточности в дефинициях; 					
	– названы и определены лишь некоторые характеристики					

	рассматриваемой	проблемы,	система	аргументации		
	высказываемых тезисов отсутствует					
	– допущены незначительные фактические неточности;					
	 научные дискуссии по рассматриваемой проблеме не охарактеризованы 					
	- собственная позиция по проблемным моментам вопросов не					
	выражена					
Неудовлетворительно	- отсутствует знание терминологии, научных дискуссий вокруг					
	рассматриваемой проблемы;					
	– в ответе допускаются грубые фактические ошибки,					
	- не представлена собственная точка зрения по характеризуемой					
	проблеме					

7. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

- 1.Победря Б.Е. Механика композиционных материалов: Учебное пособие для студентов университета, обучающихся по специальности «Механика». // М.: Изд-во МГУ, 1984. 335 с.
- 2. Кристенсен Р. Введение в механику композитов. // М.: Мир, 1982. 334 с.
- 3.Ванин Г.А. Микро-механика композитных материалов. // Киев: Наук.думка, 1985. 304 с.
- 4.Вильдеман В.Э., Соколкин Ю.В., Ташкинов А.А. Механика неупругого деформирования и разрушения композиционных материалов. // М.: Наука. Физматлит, 1997. 288 с.
- 5. Черепанов Г.П. Механика разрушения композиционных материалов. // М.: Наука, 1983. — 296с.
- 6.Плювинаж Γ . Механика упругопластического разрушения: Пер. с франц. // М.: Мир, 1993.-450 с.
- 7. Кравчук А.С. Механика полимерных и композиционных материалов. Экспе-риментальные и численные методы: Учебное пособие для студентов, обуча-ющихся по специальности «Механика» // М.: Наука. Физматлит, 1985. 303 с.
- 8. Ломакин В.А. Статистические задачи механики твердых деформируемых тел. // М.: Наука, 1970. –6140 с.
- 9. Механика композитных материалов и элементов конструкций: В 3-х томах. / Гузь А.Н., Григоренко Я.М., Бабич И.Ю. и др. – Киев: Наук.думка, 1983. – 464 с

Дополнительная литература

1. Андреева, А. В. Основы физикохимии и технологии композитов: Учеб. по-собие для студ. вузов по направлению "Материаловедение, технологии мате-риалов и покрытий" (спец. "Материаловедение в машиностроении")/ А. В. Андреева. - М.: Журн. "Радиотехника", 2001. - 191 с.

- 2. Голушко, С. К. Прямые и обратные задачи механики упругих композитных пластин и оболочек вращения/ С. К. Голушко. М.: Физматлит, 2008. 430 с.
- 3. Методы расчета цилиндрических оболочек из композиционных материалов/ Ю. С. Соломонов [и др.]. М.: Физматлит, 2009. 264 с.
- 4. Паньков, А. А.Паньков, А. А. Методы самосогласовывания механики композитов. [Обощенный метод самосогласования]/ А. А. Паньков; Федер. агентство по образованию, ГОУ ВПО Перм. гос. техн. ун-т. Пермь: Изд-во Перм. гос. техн. ун-та, 2008. 250 с
- 5. Полимерные композиционные материалы. Прочность и технология/ С. Л. Баженов [и др.]. Долгопрудный: Интеллект, 2010. 347 с.
- 6. Промышленные полимерные композиционные материалы/ [М. Ричардсон [и др.]; под ред. М. Ричадсона; пер. с англ. П. Г. Бабаевского; под ред. П. Г. Бабаевского. М.: Химия, 1980. 472 с.

Программное обеспечение:

- система электронного образовательного контента БФУ им. И. Канта <u>www.lms-3.kantiana.ru</u>, обеспечивающую разработку и комплексное использование электронных образовательных ресурсов;
- серверное программное обеспечение, необходимое для функционирования сервера и связи с системой электронного обучения через Интернет;
- установленное на рабочих местах студентов ПО: Microsoft Windows 7, Microsoft Office Standart 2010, антивирусное программное обеспечение Kaspersky Endpoint Security.

Электронные образовательные ресурсы:

- НЭБ Национальная электронная библиотека, диссертации и прочие издания
- eLIBRARY.RU Научная электронная библиотека, книги, статьи, тезисы докладов конференций
 - Гребенников Электронная библиотека ИД журналы
 - ЭБС Консультант студента
 - ПРОСПЕКТ ЭБС
 - ЭБС ZNANIUM.COM
 - РГБ Информационное обслуживание по МБА
 - БЕН РАН
 - Электронно-библиотечная система (ЭБС) Кантитана (https://elib.kantiana.ru/)

8. Материально-техническое обеспечение дисциплины

БФУ им. И. Канта имеет специальные помещения и лаборатории для проведения занятий лекционного типа, групповых и индивидуальных консультаций, научных исследований, промежуточной аттестации, а также помещения для самостоятельной работы и помещения для хранения и профилактического обслуживания оборудования.