Проекты
Развитие методов машинного обучения и теории сетей для анализа мультимодальных данных нейровизуализации |
Целью проекта является развитие физико-математических методов и моделей для анализа функциональных сетей мозга и выявление интегративных процессов, сопровождающих развитие сенсорных, моторных, когнитивных функций и неврологических заболеваний. Проект направлен на решение фундаментальной научной проблемы, лежащей на стыке нейронауки, нелинейной динамики и теории сложных сетей и связанной с исследованием механизмов нейронного взаимодействия в кортикальной сети головного мозга во время восприятия и обработки внешней сенсорной информации. Поставленная задача является масштабной и междисциплинарной. Ее решение затрагивает постановку серии детально проработанных нейрофизиологических экспериментов по регистрации активности нейронной сети головного мозга, с последующей обработкой большого объема экспериментальных данных с целью выявления функциональных связей в кортикальной сети головного мозга. Также необходимо проведение обширных теоретических работ по моделированию процессов обработки сенсорной информации в нейронной сети головного мозга на базе модельных нейронных сетей со сложной топологией, позволяющих детально исследовать условия формирования когерентных структур и дать обоснование обнаруженным экспериментальным эффектам. Задачи
|
Разработка интерфейса мозг-компьютер для персонализации образовательной траектории ребенка |
Цель — разработка методов неинвазивного мониторинга состояния мозга ребенка в процессе обучения (показателей внимания, вовлеченности в решение задач, сконцентрированности и других важных критериев успешности учебной деятельности) и управление образовательной траекторией для улучшения усвоения материала. Задачи
|
Разработка методов мониторинга и тренировки моторных и когнитивных функций в пожилом возрасте |
Цель — изучение физических процессов деградации моторных и когнитивных функций человека в процессе старении с целью разработки методов ранней диагностики, предупреждения и реабилитации патологий нервной системы на основе выявленных закономерностей. Задачи
|
Разработка методов для объективной оценки психофизиологического состояния ребенка в процессе обучения |
Основной фундаментальной задачей проекта является разработка физико-математических методов для объективной оценки психофизиологического состояния ребенка в процессе обучения на основе анализа данных биоэлектрической активности головного мозга и развитие педагогической концепции использования полученных данных для персонализации обучения младших школьников. Основной задачей естественно-научной компоненты исследования является выявление фундаментальных особенностей частотно-временной и пространственно-временной структуры многоканальных нейрофизиологических сигналов, ассоциирующихся с изменением таких характеристик психофизиологического состояния, как, например, степень внимания ребенка в конкретный момент времени и уровень вовлеченности в процесс решения задач. На основании полученных фундаментальных результатов о динамике нейронных ансамблей головного мозга планируется разработка методов обработки электроэнцефалографических (ЭЭГ) сигналов на основе частотно-временного анализа и машинного обучения для оценки психофизиологического состояния обучаемого (младшего школьника) в режиме реального времени с использованием нейроинтерфейса «мозг-компьютер». Основной задачей психолого-педагогической компоненты проекта является выявление наиболее общих особенностей и взаимосвязей между экспериментальными нейрофизиологическими (в особенности, электроэнцефалографическими) данными как входными параметрами и логикой построения персонализированных траекторий обучения. На основании полученных фундаментальных результатов будет разработана педагогическая модель адаптивной технологии для построения персонализированной траектории обучения младшего школьника на основе результатов обработки электроэнцефалографических данных. |
Физические методы управления процессами сенсомоторной интеграции в головном мозге на базе транскраниальной магнитной стимуляции |
Основной идеей проекта является развитие физико-математических методов управления характеристиками функциональных сетей в головном мозге человека, формирующихся в процессе сенсомоторной интеграции, которые, в частности, позволят корректировать структуру сети в соответствии с поставленной целью. Такая корректировка перспективна с точки зрения разработки подходов для ускорения обучения человека выполнению поставленной задачи (например, воображение движений для интерфейса мозг-компьютер) и/или повышения эффективности её решения (например, улучшения скорости реакции на визуальные стимулы). Фундаментальная значимость работ по развитию таких методов управления определяется возможностью понимания сложных механизмов функционирования головного мозга человека, включая процессы интеграции и сегрегации функциональных сетей мозга. Развиваемые в настоящем проекте методы управления характеристиками функциональных сетей основываются на современных достижениях в области неинвазивых способов воздействия на кору головного мозга. Для модуляции активности различных зон мозга используется транскраниальная магнитная стимуляция (ТМС), которая является безопасным и эффективным методом локального воздействия (активация или ингибирование) на кору головного мозга при помощи коротких магнитных импульсов. Восстановление функциональных сетей, формирующихся в головном мозге, проводятся на базе результатов электроэнцефалографических (ЭЭГ) исследований. |
Применение методов искусственного интеллекта для задач персонализированной медицины |
Коллектив центра проводит междисциплинарные исследования на стыке нейронауки, теории сетей и машинного обучения с целью разработки методов выявления рисков развития неврологических патологий и мониторинга течения заболеваний. Разрабатываемые методы являются основой для создания систем поддержки принятия врачебных решений (СППВР) для неврологии и эпилептологи. Основная идея разрабатываемых подходов заключается в комбинировании методов статистического анализа для выявления общих фундаментальных особенностей, определяющих развития исследуемой патологии в большой группе пациентов, с методами машинного обучения для учета индивидуальных особенностей конкретного пациента. Для выявления фундаментальных закономерностей, характеризующих состояния человека, используются передовые методы анализа больших объемов взаимосвязанных биологических данных, в частности методы сетевой физиологии (англ. Network Physiology) и сложные корреляционные модели, описывающие связи между данными различных модальностей. Для выявления и учета индивидуальных особенностей разрабатываются подходы для поиска сложных взаимосвязях в данных каждого отдельного испытуемого. Это позволяет сформировать персональный профиль пациента в анализируемом объеме данных, проследить его эволюцию во времени и обнаружить отклонения от нормы на ранней стадии. Обнаруженные фундаментальные закономерности и индивидуальные особенности позволяют сформировать репрезентативные и понятные наборы признаков для обучения машинных методов, делая этот процесс интерпретируемым и «прозрачным» для врачей и исследователей. Последнее является необходимым условием для развития интеллектуальных систем в медицине. |
| Умная одежда В изготовленный образец интегрированы компоненты, реализующие концепцию носимой электроники для мониторинга мышечной активности пользователя в процессе тренировок. Главная функциональная особенность заключается в объективной оценке нагрузки мышц плечевого пояса посредством съема электромиографических сигналов. Предусмотрена наглядная визуализация распределения мышечных нагрузок на удаленном мобильном устройстве. Система вибростимуляции служит для автономного локального информирования о нежелательных и опасных паттернах сокращений мышц, что в конечном итоге способствует формированию осознанных сбалансированных двигательных навыков. Таким образом, в образце реализуется концепция носимой электроники – «умной одежды» для спортивных тренировок. |
Сотрудники
Личный кабинет для
Личный кабинет для cтудента
Даю согласие на обработку представленных персональных данных, с Политикой обработки персональных данных ознакомлен
Подтверждаю согласие